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LElTER TO THE EDITOR 

Mott scattering of anyons: some exact results 
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7 Physics Department. McMaster University, Hamilton, Ontario, Canada L8S4M17 
t Institute of Physics, Bhubaneswar 751005. India 

Received 14 October 1991 

Abstnet. The planar differential cross section for the Matt scattering of two identical 
charged anyons is obtained in a closed form. This expression exhibits a marked asymmetry 
between forward and backward angles, and is especially simple far the semion-semion 
scattering. At low energies, a pronounced dip in the differential cross section due to planar 
Coulomb-anyonic interference appears at the forward angles, whose implication is dis- 
cussed. 

In this letter, the planar Coulomb scattering cross section of two anyons is obtained 
analytically, and the effect of the interference between the planar Coulomb and the 
statistical interaction on the cross section is examined. Here, by planar Coulomb, we 
mean a l / r  potential rather than a logarithmic potential, although it is the latter that 
obeys the Laplace equation in two dimensions. We thus have in mind a three- 
dimensional system in which the motion of the charged particles is confined in a plane, 
as in the quantum Hall effect [l]. The expression for the pure anyonic cross section 
was already contained in the classic paper by Aharonov and Bohm [Z], and interest 
in this problem was revived recently by March-Russell and Wilczek [3]. Since then, 
others have studied anyonic scattering [4] or the related Dirac scattering of low-energy 
fermions by a Chern-Simons vortex [5], but no one to our knowledge has calculated 
the Mott scattering cross section of anyons. A number of studies have been made [6-91 
for the three-dimensional Coulomb problem in the presence of the Bohm-Aharonov 
potential, and the Green function has been written as an infinite double sum. From 
the poles of the Green function, the bound states for the attractive case have also been 
deduced. But the non-trivial problem of obtaining the planar Coulomb cross section 
of anyons in a closed form and the explicit demonstration of the interference effects 
due to statistics of identical particles in this case are obtained here for the first time, 
Besides being an example of an exactly solvable non-trivial problem, the final expression 
for semions is remarkably simple. The Mott differential cross section for anyons exhibits 
a pronounced dip at forward angles, whose implication is discussed. 

Consider the scattering of two identical anyons in the presence of a repulsive planar 
Coulomb interaction, V ( r )  = e2 / r ,  where r = 111, is the relative distance between the 
anyons in a plane. The Lagrangian for the relative motion in polar coordinates ( r ,  0)  
is given by 

L = ;pi' - hue - V ( r )  (1) 
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where p = 4 2  is the reduced mass, r = (II - r2), and 0 = e,2 = tan-l[(y, - y 2 ) / ( x I  - x2)], 
The corresponding Hamiltonian is 

with p, = ( d L / d i ) ,  pn = (dL/J8) .  For a = 0, the two particles are bosons interacting only 
via the planar Coulomb potential V(r), while for a = 1, they are fermions. We restrict 
the strength of the statistical interaction a to be in the range (0, l ) ,  and the special 
case a = f  corresponds to semions. The Schrodinger equation for each partial wave 
+,(I) may be written down, whose solutions are confluent hypergeometric functions, 
as for the Coulomb problem [lo]. The regular solution is expressed as a linear 
combination of the partial waves, with appropriate coefficients cl's, and is given by 

1 ip 
I--- ( 2 2k 

m 

+dr )  = E cl ei'arl'+al e'*'M l/+al+-+-, 21/+al+ 1, -2ikr 

Here M ( a ,  b, z )  is the confluent hypergeometric function defined in Abramowitz and 
Stegun [ll], and p = me2/f i2  is the inverse Bohr radius. The coefficients c, are chosen 
such that when the planar Coulomb distorted asymptotic plane wave is subtracted 
from the solution (3). only an outgoing phase shifted spherical wave is left, modulated 
by the scattering amplitude &( e), with 0 the scattering angle. We obtain 

where 

In deriving the above equation, we have assumed the incident wave to be incident 
from the left. To recover the convention used by Aharonov and Bohm [2], our scattering 
angle e should be replaced by (0  - T ) .  Note also that (4) reduces to the correct well 
known limits for anyonic scattering for B = 0. It also gives the correct two-dimensional 
scattering cross section for a 1 f r potential when a = 0. 

The series on the right-hand side of (4 )  may be expressed in terms of hypergeometric 
functions [ 111 by splitting the sum into ranges from I = 0 to m and from I = -1 to -w. 
This may be done by using the relation 

and a similar one for the sum from I =  -1  to -w. 
The result is 

2k 
1 i s  1 

f * ( O ) = -  J2?rki 2F,( l , l + a + - ; - + a  2 2k Z --; e 
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We would like to point out that the hypergeometric functions in ( 5 )  diverge at 
8 =O. For scattering in the pure Bohm-Aharonov case, the question of a spurious 
delta-function in the forward scattering amplitude due to the interchange of the l sum 
in the partial wave expansion with the r e m  limit in the wavefunction has been 
examined carefully by Hagen [4]. It is more convenient to rewrite ( 5 )  in a form that 
apparently separates the planar Coulomb and anyonic parts and simplifies considerably 
for ihe special cases of a = 0, f and 1. Some non-trivial algebra results in yielding the 
following form (with the restriction larg(-z)l< ?r, where z = eifl, and excluding 0 = 0) 
for fk( e): 

exp( (2i7. - i m  2k 

2iksin'- 
&(e)= 

x i.,.. cos[ li( (I +$)I -1) 

cos [ ii( (I -31 

In the expression above, the second term in the square bracket on the right-hand 
side vanishes for (I = 0, 1 and i, as may be easily checked. Furthermore, for (I = 1, the 
factor (-e")-" in the first term ensures that an overall negative sign appears in the 
scattering amplitude & as 0 + (e  - T ) ,  appropriate for fermions. To elaborate on this 
point, note that in the hosonic basis, only even I's in the sums (3) and (4) are allowed. 
This may he taken care of in the usual fashion by summing over all integral I's hut 
including the exchange amplitude &(e - a). The expression for the differential cross 
section is then 

It is now relatively simple to calculate the differential cross section for any (I in the 
range (0, l) ,  and the expressions are especially simple for the scattering cases: bosonic 
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(a = 0).  fermionic (a = 1) and semionic (a =f).  For the bosonic and fermionic scat- 
tering, 

+- ' +  (8) 
-=-tanh($)[ d o  P e * e  

sin2- cos - 
2 2 

d0  4k2 

where the plus(+) sign is for bosons and the minus(-) sign for fermions. In the case 
of semion-semion scattering, the differential cross section is given by 

* = a c o t h ( z )  [ 2 +- (9 )  
dB 4k2 sin 2 8  - cos2- 2 2 

It may also be easily seen that we recover the pure anyon-anyon scattering cross 
section, if we set p = 0 in (6) and substitute in (7). 

We can make some general remarks about the scattering cross section as exhibited 
by the expressions above. 

( a )  An examination of (4) for h(0) shows that it is invariant for O+-e and 
a + -a. This corresponds to combined P and T transformations [3]. 

( b )  Again from (4), it is clear that h ( O - m ) = h ( O + m ) .  It then follows from (7) 
that the differential cross section is invariant under the rotation O+O+m, i.e. x +  -x, 
and y + -y. 

The differential cross sections for scattering, multiplied by p ,  is dimensionless and 
depends only on the angle 0, and the parameter P / k  for a given a. This quantity is 
plotted on a logarithmic scale in figure 1 as a function of the angle 0 for a = 0 (bosonic), 
a = 1 (fermionic) and various intermediate values of a, including the special case of 
a =$ (semionic). In this figure two sets of curves are shown. The upper set corresponds 
to low energy ( k / P  = 0.25) and the lower set to high energy (k/P = 2.0) scattering 
respectively. (For the latter case, we have divided the cross sections by 10 and have 
only shown the curves for three values of a for clarity.) The lower energy curves show 
more structure, essentially brought about by the interference term. From figure 1, it is 
clear that for a = 0 and a = 1, the cross section is symmetric about 8 = m / 2 .  In two 
dimensions, parity transformation may be taken to correspond to x + -x and y + y, 
or e + ( m  - e). Thus asymmetry in the cross section about 0 = 7r/2 signals parity 
violation. This violation is brought about by the interference term, and the asymmetry 
is clearly seen in figure 1. The other point that clearly comes out from the figure is 
that the fermionic cross section goes to zero for 0 = a/2 ,  which is true for spinless 
fermions. 

Most interesting is the appearance of a pronounced dip in the forward angle region 
for low-energy scattering of two anyons, as seen in the upper set of curves in the figure. 
In our problem, since anyons are taken to be identical charged particles, = me2/*' 
is always positive, and the planar Coulomb part of the interaction is repulsive. However, 
changing the sign of p mathematically results in the interference dip shifting to 0 > 5712 
regiont. Note that for bosons (a = 0), there are clear symmetrical dips in the cross 

t It is of some mathematical interest to note that for an attractive planar Coulomb potential between anyons, 
the two-body bound-state problem is easily solved, and exhibits level-crossing at (I = $. 
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Figure 1. The Matt anyon-anyon differential cross sections (0 dm/dO) are displayed versus 
scatteringangle ~ ' , f o r ~ = O ( - ) , a = ~ ( ~ . . ) , a = ~ ( - - - - ) , ~ = ~ ( - - - - ) , a n d a = l  
(- - -). The upper set of curves corresponds to  the law-energy scattering with klB =0.25 
and the lower set of curves corresponds to high-enersy scattering with k/E =2.0i and we 
have displayed only the a = 0, f, 1 C U N ~ S ,  and divided the cross sections by 10 for the latter 
set. 

section on both sides of 0 = ~ / 2 .  As 01 is increased, the forward angle dip shifts more 
and more towards B = ~ f 2 ,  approaching the null cross section for a = 1. This effect is 
spectacular for low-energy scattering, and is of statistical origin. Such extreme asym- 
metry in scattering, together with the pronounced dip may be taken to be the signature 
of anyons, hut it is not clear if it is at all possible to exploit this experimentally. 
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